1

Supplementary Data

Inflammatory Proteins and the Severity of Dilated Virchow-Robin Spaces in the Elderly

Claudia L. Satizabal^{a,b}, Yi-Cheng Zhu^c, Carole Dufouil^{a,d} and Christophe Tzourio^{a,d,*}

Handling Associate Editor: Jack de la Torre

Accepted 3 August 2012

MRI EXAMINATION

Exclusion criteria for scans were: 1) presence of an internal electrical/magnetic device; 2) history of neurosurgery or aneurysm; 3) presence of metal fragments in the eyes, brain, or spinal cord; and 4) claustrophobia. MRI acquisition was performed on a 1.5-Tesla Magnetom (Siemens; Erlangen, DE). A three-dimensional high-resolution T1-weighted brain volume was acquired using a three-dimensional inversion recovery fast spoiled-gradient echo sequence (repetition time = 97 ms; echo time = 4 ms; inversion time = 600 ms; coronal acquisition). The axially reoriented three-dimensional volume matrix was $256 \times 192 \times 256$ size with a $1.0 \times 0.98 \times 0.98$ mm³ voxel size, yielding 124 slices covering the whole brain. T2- and proton density-weighted brain volumes were acquired using a two-dimensional dual spin echo sequence with two echo times (repetition time = $4,400 \,\mathrm{ms}$; echo time $1 = 16 \,\mathrm{ms}$; echo time 2 = 98 ms). T2 and proton density acquisitions consisted of 35 axial slices 3.5 mm thick (0.5 mm spacing),

having a 256 \times 256 matrix size, and a 0.98 \times 0.98 mm 2 in-plane resolution.

dVRS RATING

In basal ganglia, the degree of severity was defined according the slice containing the greatest number of dVRS as 1st: <5 dVRS; 2nd: 5 to 10 dVRS; 3rd: >10 dVRS but still numerable; and 4th: innumerable dVRS resulting in a cribriform change in basal ganglia. In white matter, the degree of severity was defined as 1st: \leq 10 dVRS in total white matter; 2nd: >10 dVRS in total white matter and <10 dVRS in the slice containing the greatest number of dVRS; 3rd: 10 to 20 dVRS in the slice containing the greatest number of dVRS; and 4th: >20 dVRS in the slice containing the greatest number of dVRS (see Supplementary Table 1). The intra-rater agreement was of $\kappa = 0.77$ for basal ganglia and $\kappa = 0.75$ for white matter.

^aINSERM U708 "Neuroepidemiology", Bordeaux, France

^bUniversité Pierre et Marie Curie, Paris, France

^cDepartment of Neurology, Peking Union Medical College Hospital, Beijing, China

^dUniversité Victor Segalen Bordeaux-2, Bordeaux, France

^{*}Correspondence to: Prof. Christophe Tzourio, INSERM U708, Université Victor Segalen, 146 rue Léo Saignat – Case 11, 33076 Cedex, Bordeaux, France. Tel.: +33 557571659; Fax: +33 142162541; E-mail: christophe.tzourio@inserm.fr.

Supplementary Table 1 Severity classification of dVRS in basal ganglia or white matter

Degree	Basal ganglia*	White matter
1st	<5 dVRS	≤10 dVRS in total white matter
2nd	5 to 10 dVRS	>10 dVRS in total white matter and <10 in the slice containing the greatest number of dVRS
3rd	>10 dVRS, still numerable	10 to 20 dVRS in the slice containing the greatest number of dVRS
4th	Innumerable dVRS with cribriform change	>20 dVRS in the slice containing the greatest number of dVRS

dVRS, dilated Virchow-Robin Spaces.
*In the slice containing the greatest number of dVRS.